Wrapper function to run the jags model for estimating the proportion of modern contraceptive methods supplied by the public & private Sectors using a Bayesian hierarchical penalized spline model for the national and subnational administration levels
run_jags_model.Rd
Wrapper function to run the jags model for estimating the proportion of modern contraceptive methods supplied by the public & private Sectors using a Bayesian hierarchical penalized spline model for the national and subnational administration levels
Usage
run_jags_model(
jagsdata,
jagsparams = NULL,
n_iter = 80000,
n_burnin = 10000,
n_thin = 35,
n_chain = 2,
n_cores = NULL,
...
)
Arguments
- jagsdata
The object from the mcmsupply::get_modelinputs() function.
- jagsparams
The parameters of the JAGS model you wish to review
- n_iter
Default is 80000. Number of itterations to do in JAGS model.
- n_burnin
Default is 10000. Number of samples to burn-in in JAGS model.
- n_thin
Default is 35. Number of samples to thin by in JAGS model.
- n_chain
Default is 2. Number of chains to run in your MCMC sample.
- n_cores
The number of cores to use for parallel execution in subnational estimation. If not specified, the number of cores is set to the value of options("cores"), if specified, or to approximately half the number of cores detected by the parallel package.
- ...
Arguments from the mcmsupply::get_modelinputs() function.
Examples
if (FALSE) {
raw_data <- get_data(national=FALSE, local=TRUE, mycountry="Nepal")
jagsdata <- get_modelinputs(startyear=1990, endyear=2030.5, nsegments=12, raw_data)
run_jags_model(jagsdata)
myjagsparams <-c("P","alpha_pms")
run_jags_model(jagsdata, jagsparams = myjagsparams)
}