Skip to contents

This vignette covers package data. Central to all vignettes are data inputs in the form of, country classifications, estimated correlations, estimated national and subnational model parameters for one-country runs, and national and subnational family planning source data.

  1. Country and area classification Country_and_area_classification_inclFP2020
  2. Country names country_names
  3. Estimated national correlations estimated_national_correlations
  4. Estimated subnational correlations estimated_global_subnational_correlations and estimated_global_spatial_subnational_correlations
  5. Estimated model parameters for national one-country runs median_alpha_region_intercepts, precision_alpha_country_intercepts , and Bspline_sigma_matrix_median,
  6. Estimated model parameters for subnational one-country runs median_alphacms, tau_alpha_pms_hat, sigma_delta_hat, spatial_sigma_delta_hat, global_provincial_neighbouradj, and the country-specific neighbourhood adjacency matrices in the data/local_neighbours folder
  7. Family planning source data national_FPsource_data and subnat_FPsource_data

Load your library

1. Country and area classification

Country and area classification data is used as the a link between low-level divisions (country) and higher-level divisions (sub-regions, regions). After loading the package, enter Country and area classification into the console to access this data.

Country_and_area_classification
## # A tibble: 231 × 8
##    `Country or area`   `ISO Code` `Major area`         Region `Developed region`
##    <chr>                    <dbl> <chr>                <chr>  <chr>             
##  1 Afghanistan                  4 Asia                 South… No                
##  2 Albania                      8 Europe               South… Yes               
##  3 Algeria                     12 Africa               North… No                
##  4 American Samoa              16 Oceania              Polyn… No                
##  5 Andorra                     20 Europe               South… Yes               
##  6 Angola                      24 Africa               Middl… No                
##  7 Anguilla                   660 Latin America and t… Carib… No                
##  8 Antigua and Barbuda         28 Latin America and t… Carib… No                
##  9 Argentina                   32 Latin America and t… South… No                
## 10 Armenia                     51 Asia                 Weste… No                
## # ℹ 221 more rows
## # ℹ 3 more variables: `Least developed country` <chr>,
## #   `Sub-Saharan Africa` <chr>, FP2020 <chr>
??Country_and_area_classification

1. Country names

Country names is to inform users of what countries are available at the national and subnational administrative division in the preloaded data of the mcmsupply package. After loading the package, enter country_names into the console to access this data.

country_names
## # A tibble: 30 × 3
##    `Country names`              National level data ava…¹ Subnational level da…²
##    <chr>                        <chr>                     <chr>                 
##  1 Afghanistan                  Yes                       Yes                   
##  2 Benin                        Yes                       Yes                   
##  3 Burkina Faso                 Yes                       Yes                   
##  4 Cameroon                     Yes                       Yes                   
##  5 Congo                        Yes                       No                    
##  6 Democratic Republic of Congo Yes                       Yes                   
##  7 Cote d’Ivoire                Yes                       Yes                   
##  8 Ethiopia                     Yes                       Yes                   
##  9 Ghana                        Yes                       Yes                   
## 10 Guinea                       Yes                       Yes                   
## # ℹ 20 more rows
## # ℹ abbreviated names: ¹​`National level data available`,
## #   ²​`Subnational level data available`
??country_names

3. Estimated national correlations

This is the estimated correlations for the rates of change between methods in the global national model. The approach for estimating correlations at the national level is very similar to that at the subnational level. For an example of how to calculate the subnational correlations, please review the inst/data-raw/estimated_global_subnational_correlations.R script.

estimated_national_correlations
## # A tibble: 10 × 4
##    row         column               public_cor private_cor
##    <chr>       <chr>                     <dbl>       <dbl>
##  1 Implants    Female Sterilization        0           0  
##  2 Injectables Female Sterilization        0.2         0.7
##  3 IUD         Female Sterilization        0.1         0.2
##  4 OC Pills    Female Sterilization        0           0.7
##  5 Injectables Implants                    0.1         0.1
##  6 IUD         Implants                    0.2         0  
##  7 OC Pills    Implants                    0           0.1
##  8 IUD         Injectables                 0.2         0.1
##  9 OC Pills    Injectables                 0.5         0.8
## 10 OC Pills    IUD                         0.1         0.1

4. Estimated subnational correlations

This is the estimated correlations for the rates of change between methods in the global national model. There is a vignette to describe how we calculated these correlations at the subnational level, please review the inst/data-raw/estimated_global_subnational_correlations.R script.

estimated_global_subnational_correlations
## # A tibble: 10 × 4
##    row         column               public_cor private_cor
##    <chr>       <chr>                     <dbl>       <dbl>
##  1 Implants    Female Sterilization        0.1           0
##  2 Injectables Female Sterilization        0.2           0
##  3 IUD         Female Sterilization        0             0
##  4 OC Pills    Female Sterilization        0.2           0
##  5 Injectables Implants                    0             0
##  6 IUD         Implants                    0             0
##  7 OC Pills    Implants                    0             0
##  8 IUD         Injectables                 0.1           0
##  9 OC Pills    Injectables                 0.3           0
## 10 OC Pills    IUD                         0.2           0

5. Estimated model parameters for national one-country runs

These are the estimated parameters used in a one-country national model run. median_alpha_region_intercepts are the regional intercepts used to inform the country-specific intercept of the model, the precision_alpha_country_intercepts are the associated variance with these country-specific intercepts. Bspline_sigma_matrix_median is the variance-covariance matrix used to inform the Wishart prior on the first-order difference of the spline coefficients.

median_alpha_region_intercepts
## , , 1
## 
##          [,1]     [,2]      [,3]      [,4]       [,5]
## [1,] 1.301550 1.833818 0.5270685 0.7537049 -0.5164741
## [2,] 3.690803 4.764637 3.1455633 4.5460172  1.7931031
## 
## , , 2
## 
##          [,1]     [,2]     [,3]     [,4]       [,5]
## [1,] 2.583934 2.683237 1.794515 1.790627 -0.1707711
## [2,] 3.748790 4.751290 3.117329 4.546589  1.7916651
## 
## , , 3
## 
##          [,1]     [,2]     [,3]     [,4]       [,5]
## [1,] 1.675565 1.697223 1.029494 1.005109 -0.5180739
## [2,] 3.730166 4.760698 3.077658 4.553346  1.6835570
## 
## , , 4
## 
##          [,1]     [,2]     [,3]     [,4]      [,5]
## [1,] 1.735901 2.048935 1.242921 1.054806 0.1537607
## [2,] 3.688687 4.736354 2.988089 4.587235 1.8155029
## 
## , , 5
## 
##          [,1]     [,2]     [,3]     [,4]       [,5]
## [1,] 1.517680 1.195353 1.517616 1.065101 -0.7044244
## [2,] 3.727607 4.780151 3.036655 4.557675  1.6806916
precision_alpha_country_intercepts
## [1] 1.0338134 0.5713761
Bspline_sigma_matrix_median
## , , 1
## 
##            [,1]       [,2]       [,3]       [,4]       [,5]
## [1,] 0.17569510 0.00000000 0.04788189 0.02535736 0.00000000
## [2,] 0.00000000 0.59857633 0.04403929 0.09373054 0.00000000
## [3,] 0.04788189 0.04403929 0.32499002 0.06931805 0.16419734
## [4,] 0.02535736 0.09373054 0.06931805 0.37017274 0.03482467
## [5,] 0.00000000 0.00000000 0.16419734 0.03482467 0.32956170
## 
## , , 2
## 
##            [,1]        [,2]       [,3]       [,4]        [,5]
## [1,] 0.96824736 0.000000000 0.63234459 0.03290151 0.650254947
## [2,] 0.00000000 0.002161332 0.00418859 0.00000000 0.004367744
## [3,] 0.63234459 0.004188590 0.85508582 0.01539978 0.693431845
## [4,] 0.03290151 0.000000000 0.01539978 0.02854580 0.015767092
## [5,] 0.65025495 0.004367744 0.69343184 0.01576709 0.903939091

6. Estimated model parameters for subnational one-country runs

These are the estimated parameters used in a one-country subnational model run. median_alphacms are the country-specific intercepts used to inform the subnational province-specific intercepts of the model, the tau_alpha_pms_hat are the associated variance with these province-specific intercepts. sigma_delta_hat is a variance-covariance matrix used to inform the Wishart prior on the first-order difference of the spline coefficients for the one-country subnational model.

median_alphacms
## , , Afghanistan
## 
##           [,1]     [,2]      [,3]      [,4]        [,5]
## [1,] 0.9375425 2.279007 0.9614377 0.7875669 -0.06685011
## [2,] 3.5584977 4.994330 3.9379771 5.1905018  3.21232620
## 
## , , Benin
## 
##          [,1]     [,2]     [,3]      [,4]       [,5]
## [1,] 1.614509 2.278655 1.470588 0.6978635 -0.7425855
## [2,] 3.490346 5.012334 3.579064 5.1853863  1.4007400
## 
## , , Burkina Faso
## 
##          [,1]     [,2]     [,3]     [,4]     [,5]
## [1,] 1.541036 2.815530 3.204556 1.315246 1.669336
## [2,] 3.509578 5.000577 3.201150 5.140294 1.547652
## 
## , , Cameroon
## 
##           [,1]     [,2]     [,3]     [,4]       [,5]
## [1,] 0.3805835 1.926714 1.256077 1.139853 -0.3155968
## [2,] 3.6921759 4.962097 3.267732 5.101189  2.0331992
## 
## , , Congo Democratic Republic
## 
##          [,1]     [,2]      [,3]     [,4]      [,5]
## [1,] 2.054518 1.548893 0.6588179 1.141659 -1.656690
## [2,] 3.481285 4.997134 3.4840919 5.131586  3.157996
## 
## , , Cote d'Ivoire
## 
##          [,1]     [,2]     [,3]     [,4]      [,5]
## [1,] 1.538612 2.586998 1.664344 1.217848 -1.097675
## [2,] 3.458898 5.019847 3.468302 5.113079  1.566580
## 
## , , Ethiopia
## 
##          [,1]     [,2]     [,3]     [,4]      [,5]
## [1,] 1.234433 2.667722 1.251174 1.987835 0.1411864
## [2,] 3.463005 5.064522 3.883845 5.182309 3.1230510
## 
## , , Ghana
## 
##          [,1]     [,2]     [,3]     [,4]      [,5]
## [1,] 1.502208 3.309794 2.364002 1.222324 -1.575251
## [2,] 3.496789 4.955784 3.452444 5.151519  3.398406
## 
## , , Guinea
## 
##         [,1]     [,2]     [,3]    [,4]       [,5]
## [1,] 1.51673 2.645890 1.559947 1.02495 -0.4648663
## [2,] 3.44377 5.068471 3.412729 5.11952  1.2336673
## 
## , , India
## 
##          [,1]     [,2]       [,3]      [,4]       [,5]
## [1,] 1.730801 2.220600 -0.6513015 0.9208466 -0.8533873
## [2,] 4.556863 5.013087  3.8707762 5.1084206  1.8644321
## 
## , , Kenya
## 
##          [,1]     [,2]     [,3]     [,4]       [,5]
## [1,] 1.164999 1.626079 0.857908 1.126047 -0.0452362
## [2,] 3.728785 5.210681 4.355300 5.182808  3.5591716
## 
## , , Liberia
## 
##          [,1]     [,2]     [,3]     [,4]     [,5]
## [1,] 1.513915 2.326553 1.176981 1.198190 0.725333
## [2,] 3.431356 4.983296 3.335941 5.137783 1.959348
## 
## , , Madagascar
## 
##          [,1]     [,2]     [,3]      [,4]      [,5]
## [1,] 1.595684 1.751767 1.929113 0.0839175 0.5807928
## [2,] 3.508909 5.050697 3.437585 5.1815975 1.5837381
## 
## , , Malawi
## 
##           [,1]     [,2]     [,3]     [,4]     [,5]
## [1,] 0.9217411 1.740507 1.890808 1.058043 1.463779
## [2,] 2.9162896 5.088991 2.976915 5.104717 2.213030
## 
## , , Mali
## 
##          [,1]     [,2]     [,3]     [,4]       [,5]
## [1,] 1.515274 2.740144 1.027390 1.229250 -0.4811589
## [2,] 3.510741 5.021333 3.244636 5.178564  1.8553459
## 
## , , Mozambique
## 
##          [,1]     [,2]     [,3]     [,4]     [,5]
## [1,] 1.893525 2.174765 2.563972 1.111325 1.930336
## [2,] 3.448346 5.030801 3.055654 5.109403 1.306878
## 
## , , Nepal
## 
##          [,1]     [,2]     [,3]     [,4]      [,5]
## [1,] 1.290717 2.081615 1.019371 1.324007 0.3638721
## [2,] 1.417112 4.976004 3.804222 5.113763 2.7966377
## 
## , , Niger
## 
##          [,1]     [,2]     [,3]     [,4]      [,5]
## [1,] 1.502122 2.642241 2.789944 1.237055 1.6032611
## [2,] 3.521154 4.970975 3.344750 5.154410 0.7229305
## 
## , , Nigeria
## 
##          [,1]     [,2]     [,3]     [,4]       [,5]
## [1,] 1.788672 2.611483 1.219640 1.350439 -0.6213742
## [2,] 3.558362 4.992574 3.740164 5.191149  2.6168193
## 
## , , Pakistan
## 
##          [,1]     [,2]      [,3]     [,4]      [,5]
## [1,] 0.281763 2.336591 0.8681863 1.097996 -0.171294
## [2,] 3.890569 4.975643 3.5851548 5.100859  1.376465
## 
## , , Rwanda
## 
##          [,1]     [,2]     [,3]     [,4]     [,5]
## [1,] 1.686746 2.979814 3.376699 1.024101 2.326879
## [2,] 3.450294 4.972424 3.433565 5.181746 2.499687
## 
## , , Senegal
## 
##          [,1]     [,2]     [,3]     [,4]     [,5]
## [1,] 1.782367 3.505220 2.929911 2.006801 1.281271
## [2,] 3.461560 4.970257 3.483374 5.122069 2.733137
## 
## , , Tanzania
## 
##          [,1]     [,2]     [,3]     [,4]      [,5]
## [1,] 1.202425 2.509193 1.580458 1.358766 1.4954566
## [2,] 2.894547 4.865637 0.397618 5.056905 0.4148872
## 
## , , Uganda
## 
##          [,1]     [,2]     [,3]     [,4]       [,5]
## [1,] 1.820563 1.760954 0.553650 1.240779 -0.7461476
## [2,] 3.627767 5.113125 4.000446 5.156258  3.0800601
## 
## , , Zimbabwe
## 
##          [,1]     [,2]     [,3]     [,4]     [,5]
## [1,] 1.283054 1.874936 2.181961 1.102948 1.017927
## [2,] 3.556670 5.059976 3.233320 5.161617 1.947115
tau_alpha_pms_hat
## [1] 1.386594 1.057686
sigma_delta_hat
## , , 1
## 
##              [,1]         [,2]       [,3]       [,4]       [,5]
## [1,] 4.796649e-01 9.453555e-05 0.09463145 0.00000000 0.08959552
## [2,] 9.453555e-05 1.818119e-06 0.00000000 0.00000000 0.00000000
## [3,] 9.463145e-02 0.000000e+00 0.45723020 0.03885141 0.13153208
## [4,] 0.000000e+00 0.000000e+00 0.03885141 0.32953745 0.11229934
## [5,] 8.959552e-02 0.000000e+00 0.13153208 0.11229934 0.42567693
## 
## , , 2
## 
##             [,1]         [,2]         [,3]         [,4]       [,5]
## [1,] 0.002637201 0.0000000000 0.0000000000 0.0000000000 0.00000000
## [2,] 0.000000000 0.0002575665 0.0000000000 0.0000000000 0.00000000
## [3,] 0.000000000 0.0000000000 0.0004097972 0.0000000000 0.00000000
## [4,] 0.000000000 0.0000000000 0.0000000000 0.0003940897 0.00000000
## [5,] 0.000000000 0.0000000000 0.0000000000 0.0000000000 0.03802578

7. Family planning source data

These are are two family planning commodity source datasets provided in this package - one for the national level observations, national_FPsource_data and one for the subnational level data subnat_FPsource_data. For the national level data, there is a vignette calculate_FPsource_national_data_from_DHSmicrodata in the inst/data-raw folder that explains how the national level data was calculated using the DHS micro-data. A similar approach was used for the subnational data using IPUMS data.

national_FPsource_data
## # A tibble: 2,448 × 9
## # Groups:   year, Method, Country [903]
##     year Country     Super_region Method average_year sector_category proportion
##    <dbl> <chr>       <chr>        <chr>         <dbl> <chr>                <dbl>
##  1  2008 Sierra Leo… Western Afr… Injec…        2008. Commercial_med…    0.265  
##  2  2008 Sierra Leo… Western Afr… Injec…        2008. Other              0.00540
##  3  2008 Sierra Leo… Western Afr… Injec…        2008. Public             0.730  
##  4  2008 Sierra Leo… Western Afr… OC Pi…        2008. Commercial_med…    0.587  
##  5  2008 Sierra Leo… Western Afr… OC Pi…        2008. Other              0.0224 
##  6  2008 Sierra Leo… Western Afr… OC Pi…        2008. Public             0.390  
##  7  2013 Sierra Leo… Western Afr… Impla…        2014. Commercial_med…    0.240  
##  8  2013 Sierra Leo… Western Afr… Impla…        2014. Other              0.00567
##  9  2013 Sierra Leo… Western Afr… Impla…        2014. Public             0.755  
## 10  2013 Sierra Leo… Western Afr… Injec…        2014. Commercial_med…    0.198  
## # ℹ 2,438 more rows
## # ℹ 2 more variables: SE.proportion <dbl>, n <dbl>
subnat_FPsource_data
## # A tibble: 6,940 × 8
##    Country Region Method average_year sector_categories proportion SE.proportion
##    <chr>   <chr>  <chr>         <dbl> <chr>                  <dbl>         <dbl>
##  1 Zimbab… Bulaw… Femal…        2016. Other               2.14e-11         0    
##  2 Zimbab… Harare Femal…        2016. Other               1.95e-11         0    
##  3 Zimbab… Manic… Femal…        2016. Other               2.06e-11         0    
##  4 Zimbab… Masho… Femal…        2016. Other               5.32e-11         0    
##  5 Zimbab… Masho… Femal…        2016. Other               5.60e-11         0    
##  6 Zimbab… Masho… Femal…        2016. Other               2.12e-11         0    
##  7 Zimbab… Masvi… Femal…        2016. Other               5.59e-11         0    
##  8 Zimbab… Matab… Femal…        2016. Other               1.93e-11         0    
##  9 Zimbab… Matab… Femal…        2016. Other               2.29e- 1         0.154
## 10 Zimbab… Midla… Femal…        2016. Other               2.09e-11         0    
## # ℹ 6,930 more rows
## # ℹ 1 more variable: n <int>