Try to use unsuitable data. The get_data function
throws an error indicating that the Method column is missing from the
custom user-supplied data.
cleaned_data <- get_data(national=FALSE, local=TRUE,
surveydata_filepath = "~/Documents/R/mcmsupply/inst/data-raw/my_custom_data_bad.xlsx",
mycountry="Ethiopia")
## Error in get_data(national = FALSE, local = TRUE, surveydata_filepath = "~/Documents/R/mcmsupply/inst/data-raw/my_custom_data_bad.xlsx", : could not find function "get_data"
Load the suitable data
cleaned_data <- get_data(national=FALSE, local=TRUE,
surveydata_filepath = "~/Documents/R/mcmsupply/inst/data-raw/my_custom_data_good.xlsx",
mycountry="Ethiopia")
pkg_data <- get_modelinputs(startyear=1990, endyear=2025.5,
nsegments=12, raw_data = cleaned_data)
Run JAGS model and get posterior point estimates with
uncertainty
mod <- run_jags_model(jagsdata = pkg_data, jagsparams = NULL,
n_iter = 40000, n_burnin = 10000, n_thin = 15)
Plot posterior point estimates with uncertainty
Pull out estimates that you are particularly interested in
estimates_2018 <- pull_estimates(model_output = mod, country = 'Ethiopia', year=2018)
head(estimates_2018)