vignettes/subnational_singlecountry_models.Rmd
subnational_singlecountry_models.Rmd
cleaned_data <- get_data(national=FALSE, local=TRUE,
mycountry="Nepal")
pkg_data <- get_modelinputs(startyear=1990, endyear=2025.5,
nsegments=12, raw_data = cleaned_data)For speed and illustration purposes, we will use 10 iterations, with no burn in period and taking every third sample. This leaves only 9 samples. We DO NOT recommend this setting. The recommended settings are 40000 iterations, with 10000 burn in period and taking every 15th sample. This is commented out and listed underneath the below R code.
mod <- run_jags_model(jagsdata = pkg_data, jagsparams = NULL,
n_iter = 10, n_burnin = 1, n_thin = 3)
# n_iter = 40000, n_burnin = 10000, n_thin = 15)We use this to evaluate the convergence of the model parameters. We should expect to see R-hat values of approximately 1.05. The plot function will give you a visual summary for each parameter monitored.
sample_draws <- tidybayes::tidy_draws(mod$JAGS$BUGSoutput$sims.matrix)
var <- sample_draws %>% dplyr::select(.chain, .iteration, .draw,`P[1,2,1,1]`) %>%
dplyr::mutate(chain = rep(1:2, each=2000)) %>%
dplyr::mutate(iteration = rep(1:2000, 2))
ggplot2::ggplot(data=var) +
ggplot2::geom_line(ggplot2::aes(x=iteration, y=`P[1,2,1,1]`, color=as.factor(chain)))Using the ggplot2 and tidybayes R packages, we will check the trace plots to assess the convergence of individual parameters. We expect to see a ‘caterpillar’ like appearance of the chains over the iterations.
plots <- plot_estimates(jagsdata = pkg_data, model_output = mod)
estimates_2018 <- pull_estimates(model_output = mod, country = 'Nepal', year=2018)
head(estimates_2018)